Determine which choice shows the expression used to solve the problem.

1) Will played eight games of basketball with his friends. If Will scored three points each game, how many points did he score total?
A. $8+3$
B. 8-3
C. 8×3
D. $8 \div 3$
2) Faye was helping her mom plant vegetables in the garden. Together they planted two rows of potatoes and four rows of turnips. How many rows did they plant total?
A. $2+4$
B. 4-2
C. 2×4
D. $4 \div 2$
3) At the fair Henry rode four rides the first day he went and eight rides the second day. How many times did he ride total?
A. $4+8$
B. 8-4
C. 4×8
D. $8 \div 4$
4) Chloe bought nine new shirts for school. If she returned four of them, how many did she end up with?
A. $9+4$
B. 9-4
C. 9×4
D. $9 \div 4$
5) An architect was building a hotel downtown. He built it with eighteen rooms total. If there are three rooms on each story how many stories tall is the hotel?
A. $18+3$
B. 18-3
C. 18×3
D. $18 \div 3$
6) A chef used three potatoes to make fries for the lunch crowd. Later he used another eight potatoes for the dinner crowd. How many potatoes did he use total?
A. $3+8$
B. 8-3
C. 3×8
D. $8 \div 3$
7) Maria was buying soap for her bathroom. She bought eight packs with each pack having four bars. How many bars of soap did she buy?
A. $8+4$
B. 8-4
C. 8×4
D. $8 \div 4$
8) The roller coaster at the state fair costs nine tickets per ride. If you had twenty-seven tickets, how many times could you ride it?
A. $27+9$
B. 27-9
C. 27×9
D. $27 \div 9$
9) Oliver went to the state fair and rode the ferris wheel seven times. If he rode it two times during the day, how many times did he ride it at night?
A. $7+2$
B. 7-2
C. 7×2
D. $7 \div 2$
10) Isabel received ten dollars for her birthday. Later she found some toys that cost two dollars each. How many of the toys could she buy?
A. $10+2$
B. 10-2
C. 10×2
D. $10 \div 2$

Answers
1.
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad

Determine which choice shows the expression used to solve the problem.

1) Will played eight games of basketball with his friends. If Will scored three points each game, how many points did he score total?
A. $8+3$
B. 8-3
C. 8×3
D. $8 \div 3$
2) Faye was helping her mom plant vegetables in the garden. Together they planted two rows of potatoes and four rows of turnips. How many rows did they plant total?
A. $2+4$
B. 4-2
C. 2×4
D. $4 \div 2$
3) At the fair Henry rode four rides the first day he went and eight rides the second day. How many times did he ride total?
A. $4+8$
B. 8-4
C. 4×8
D. $8 \div 4$
4) Chloe bought nine new shirts for school. If she returned four of them, how many did she end up with?
A. $9+4$
B. 9-4
C. 9×4
D. $9 \div 4$
5) An architect was building a hotel downtown. He built it with eighteen rooms total. If there are three rooms on each story how many stories tall is the hotel?
A. $18+3$
B. 18-3
C. 18×3
D. $18 \div 3$
6) A chef used three potatoes to make fries for the lunch crowd. Later he used another eight potatoes for the dinner crowd. How many potatoes did he use total?
A. $3+8$
B. 8-3
C. 3×8
D. $8 \div 3$
7) Maria was buying soap for her bathroom. She bought eight packs with each pack having four bars. How many bars of soap did she buy?
A. $8+4$
B. 8-4
C. 8×4
D. $8 \div 4$
8) The roller coaster at the state fair costs nine tickets per ride. If you had twenty-seven tickets, how many times could you ride it?
A. $27+9$
B. 27-9
C. 27×9
D. $27 \div 9$
9) Oliver went to the state fair and rode the ferris wheel seven times. If he rode it two times during the day, how many times did he ride it at night?
A. $7+2$
B. 7-2
C. 7×2
D. $7 \div 2$
10) Isabel received ten dollars for her birthday. Later she found some toys that cost two dollars each. How many of the toys could she buy?
A. $10+2$
B. 10-2
C. 10×2
D. $10 \div 2$

Answers
1.

2. \qquad
3. \qquad
4.

5. $\quad \mathbf{A}$
6.

7. 7. $\quad \mathrm{B}$
8.

9.

10. \qquad

